Fabrication of Single-crystalline MoO₃ Nanobelts by Using Carbons

Hitoshi Ogihara,*# Sakae Takenaka, Ichiro Yamanaka, Eishi Tanabe,[†] Akira Genseki,^{††} and Kiyoshi Otsuka Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology,

Ookayama, Meguro-ku, Tokyo 152-8552

[†]Western Hiroshima Prefecture Industrial Institute, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046 ^{††}Center for Advanced Materials Analysis, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8552

(Received July 22, 2005; CL-050952)

Single-crystalline MoO_3 nanobelts were formed by calcination of physical mixtures of carbon nanofibers and H₃(PMo₁₂-O₄₀) under air at 873 K. In contrast, single-crystalline MoO₃ with long wire structure were formed by calcination of physical mixtures of carbon nanofibers and H₄[Si(Mo₃O₁₀)₄].

One-dimensional nanostructured materials such as nanowires and nanotubes are drawing attention due to their specific physical, electrical, and chemical properties.¹ Recently, metaloxide nanobelts (ZnO, SnO₂, Ga₂O₃, In₂O₃, and CdO) were synthesized by evaporation of the corresponding metal-oxide powder at high temperatures.² The shape of nanobelt is long plate-like crystalline as the name implies. Some applications of metal-oxide nanobelts have been proposed, for example, SnO₂ nanobelts can be utilized as photochemical sensor for NO₂ at room temperature.³ In this study, MoO₃ nanobelts were prepared through the simple method. MoO₃ nanobelts can be synthesized by calcination of H₃(PMo₁₂O₄₀) and carbons.

Carbon nanofibers (home-made), graphite (from Wako Pure Chemical Industries), and graphitized carbon fibers (from Asahi Kasei Corporation) were used as carbonaceous materials for the synthesis of MoO₃ nanobelts. Carbon nanofibers are denoted as CNF, hereafter. CNF were prepared by methane decomposition over Ni/SiO₂ catalysts at 823 K.⁴ H₃(PMo₁₂O₄₀) was used as a source of MoO₃. Carbons and H₃(PMo₁₂O₄₀) were physically mixed by an agate mortar. The weight ratio of H₃(PMo₁₂O₄₀) to carbon was adjusted to 1:1. The physical mixtures in alumina crucible were calcined under air at 873 K for 5 h, to form pale vellow powder. According to XRD patterns of calcined samples (see Supporting Information), all the diffraction lines were assignable to orthorhombic molybdenum trioxide (α -MoO₃). No diffraction line due to carbons or $H_3(PMo_{12}O_{40})$ was observed. Figure 1 shows SEM and TEM images of MoO₃ formed by calcination of H₃(PMo₁₂O₄₀) and CNF. SEM image (a) indicated that formed MoO₃ was of plate-like structure. The length of MoO₃ was several micrometers, and their width was 200-400 nm. Most of MoO3 observed in SEM images were of plate-like structures. TEM image (b) clearly showed that MoO₃ had plate-like structure (the thickness is ca. 50 nm). Results in Figure 1 suggested that MoO₃ nanobelts were formed by calcination of H₃(PMo₁₂O₄₀) and CNF. According to EDX analysis, MoO₃ nanobelts were consisted of Mo and O. P contained in H₃(PMo₁₂O₄₀) would be removed as H₃PO₄ during calcination $(H_3(PMo_{12}O_{40}) \rightarrow 12MoO_3 + H_3PO_4)$. Electron diffraction pattern of MoO₃ nanobelts indicated the formation of singlecrystalline MoO₃ (the inset of Figure 1b). In addition, similar MoO₃ nanobelts were formed by using graphite and graphitized carbon fibers instead of CNF. In previous studies, MoO3 nano-

Figure 1. (a) is SEM, and (b) is TEM images of MoO_3 nanobelts.

Figure 2. (a) SEM image of MoO₃ formed by the calcination of $H_3(PMo_{12}O_{40})$. (b) SEM image of MoO₃ formed by the calcination of the mixture of $(NH_4)_6Mo_7O_{24}$ and CNF. (c) and (d) SEM images of MoO₃ formed by the calcination of the mixture of $H_4[Si(Mo_3O_{10})_4]$ and CNF.

belts have been fabricated on a mirror-polished silicon (100) wafer through the heat treatment of a Mo foil in air at 1123 K,⁵ or by the hydrothermal reaction of Na₂MoO₄ with perchloric acid in a stainless autoclave at 413 K for 24 h, followed by the filtration, washing and drying.⁶ Compared to these previous methods, our fabrication method of MoO₃ nanobelts is much simpler. MoO₃ nanobelts could be easily formed with a high yield through our method.

In order to confirm the role of carbons on the preparation of MoO₃ nanobelts, MoO₃ was synthesized by calcination of only H₃(PMo₁₂O₄₀) at 873 K for 5 h. Figure 2a shows SEM image of MoO₃ thus formed. As shown in this image, plate-like MoO₃ with a low aspect ratio (length, <2 μ m; width, ca. 1 μ m; and

thickness, 300-500 nm) was formed. This result strongly suggests that carbons are indispensable for preparing MoO₃ nanobelts. Subsequently, the effect of MoO₃ precursors on the shapes of formed MoO₃ was examined. Figure 2b shows SEM image of MoO₃ formed by calcination of a physical mixture of (NH₄)₆Mo₇O₂₄ and CNF. Obviously, SEM image (b) indicated the formation of a large block of MoO₃, that is, MoO₃ nanobelts were not formed. Therefore, it is considered that the kind of MoO₃ precursors affects the shape of MoO₃ formed by the calcination with carbons. Figures 2c and 2d show SEM images of MoO₃ formed by calcination of H₄[Si(Mo₃O₁₀)₄] and CNF. SEM image (c) indicated the formation of MoO₃ with long wire structure (the length was several tens micrometers). Electron diffraciton pattern shown in the inset of Figure 2c suggested that formed MoO₃ wires were composed of single-crystalline. SEM image (d) showed that small particles were present on some MoO₃ wires. According to EDX analysis, long wires without particles (for example, white circle (A) in SEM image (d)) were consisted of Mo and O. In contrast, EDX analysis of wires with a lot of particles (for example, white circle (B) in SEM image (d)) showed the presence of Mo, Si, and O, indicating that Si atoms in H₄[Si(Mo₃O₁₆)₄] would be present as SiO₂ particles on MoO₃ wires. The results in Figures 1 and 2 indicate that the shapes of formed MoO3 are strongly dependent on the kinds of starting materials.

Subsequently, in order to investigate the growth process of MoO₃ nanobelts, further experiments were performed as follows. A physical mixture (50 mg) of CNF and $H_3(PMo_{12}O_{40})$ was put in a conventional gas-flow system at atmospheric pressure, and mixed gases of O_2 and He (flow rate of $O_2 =$ 20 mL min^{-1} , flow rate of He = 80 mL min^{-1}) were passed over the physical mixtures. We considered that this oxidation condition was almost the same as the condition of calcination under air, because partial pressure of O_2 was the same as that of air and flow rate of mixed gases was high enough. The temperature at the reactor was increased linearly with time to 873 K at a rate of 5.5 K min⁻¹. The reactor was rapidly cooled to room temperature once the temperature at the reactor reached to 873 K. On the basis of the change in weight of the samples, ca. 40% of CNF were estimated to be oxidized into CO₂ and CO, indicating that CNF were not removed completely through the oxidation treatment. Figure 3 shows SEM images of the mixture of H₃(PMo₁₂O₄₀) and CNF before and after the oxidation treatment. SEM image (a) showed that H₃(PMo₁₂O₄₀) and CNF seemed to be well mixed before the oxidation. Bent CNF of 40–100 nm in diameter and large particle of $H_3(PMo_{12}O_{40})$ were observed. SEM image (b) showed that several MoO₃ nanobelts were formed from a block. The XRD pattern of the samples after

oxidation indicated the presence of α -MoO₃ and carbons. It was reported that H₃(PMo₁₂O₄₀) was decomposed into MoO₃ at 623 K.⁷ Therefore, in this case, H₃(PMo₁₂O₄₀) must be transformed into α -MoO₃ when the temperature at the reactor reached to 873 K. In addition, MoO₃ need to be liquefied during the formation of nanobelts, because it is difficult to grow long nanobelts from the solid. However, the melting point of MoO₃ (1068 K) is higher than the oxidation temperature (873 K). By the way, some one-dimensional materials have been prepared by using carbons. In these studies, carbons were proposed to work as reductants to form precursors with low melting point. For example, Ga₂O₃ nanowires were fabricated by heat treatment of Ga₂O₃ powder with carbon nanotubes at 1373 K.⁸ Ga₂O₃ powder was reduced into Ga₂O and Ga by carbon nanotubes. Ga₂O and Ga vapors were carried to the outlet of reactor on Ar stream, and grew as nanowires on the basis of vapor-solid mechanism. Generally, nano-scale materials are deposited at the exit of reactor when they grow based on vapor-solid mechanism. However, in the present case, MoO₃ nanobelt was formed in alumina crucible put at the center of reactor. Therefore, we considered that MoO₃ nanobelt did not be formed according to vapor-solid mechanism.

The possible role of carbons is the additional heat source, because the oxidation of carbons with oxygen is an exothermal reaction. If the additional heat was supplied during the preparation of MoO₃ nanobelts, MoO₃ was liquefied. The liquefied MoO₃ would grow as MoO₃ nanobelts on the basis of melt growth mechanism. If MoO₃ nanobelts grow according to above mechanism, MoO₃ nanobelts should be formed by the calcination of MoO₃ and CNF. However, MoO₃ nanobelts were not formed by the calcination of physical mixture of MoO₃ and CNF at 873 K for 5 h. Therefore, it is considered that H₃(PMo₁₂O₄₀) is indispensable for the formation of MoO₃ nanobelts. However, the detailed role of H₃(PMo₁₂O₄₀) cannot be explained at the present stage.

In summary, single-crystalline MoO_3 nanobelts were formed by calcination of a physical mixture of carbons and $H_3(PMo_{12}O_{40})$ at 873 K. The presence of carbons and $H_3(PMo_{12}O_{40})$ were indispensable for the fabrication of MoO_3 nanobelts.

References and Notes

- # Present address: Catalysis Research Center, Hokkaido University, N21-W10 Kita-ku, Sapporo 001-0021
- Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, *Adv. Mater.*, **15**, 353 (2003).
- 2 Z. W. Pan, Z. R. Dai, and Z. L. Wang, *Science*, **291**, 1947 (2001).
- 3 M. Law, H. Kind, B. Messer, F. Kim, and P. Yang, *Angew. Chem.*, *Int. Ed.*, **41**, 2405 (2002).
- 4 S. Takenaka, S. Kobayashi, H. Ogihara, and K. Otsuka, J. Catal., 217, 79 (2003).
- 5 Y. B. Li, Y. Bando, D. Golberg, and K. Kurashima, *Appl. Phys. Lett.*, **81**, 5048 (2002).
- 6 X. L. Li, J. F Liu, and Y. D. Li, Appl. Phys. Lett., 81, 4832 (2002).
- 7 M. Fournier, A. Aouissi, and C. Rocchiccioli-Deltcheff, J. Chem. Soc., Chem. Commun., 1994, 307.
- 8 G. Gundiah, A. Gonvindaraj, and C. N. R. Rao, *Chem. Phys. Lett.*, 351, 189 (2002).